Enhanced long-term potentiation during aging is masked by processes involving intracellular calcium stores.
نویسندگان
چکیده
The contribution of Ca(2+) release from intracellular Ca(2+) stores (ICS) for regulation of synaptic plasticity thresholds during aging was investigated in hippocampal slices of old (22-24 mo) and young adult (5-8 mo) male Fischer 344 rats. Inhibition of Ca(2+)-induced Ca(2+) release by thapsigargin, cyclopiazonic acid (CPA), or ryanodine during pattern stimulation near the threshold for synaptic modification (5 Hz, 900 pulses) selectively induced long-term potentiation (LTP) to CA1 Schaffer collateral synapses of old rats. Increased synaptic strength was specific to test pathways and blocked by AP-5. Intracellular recordings demonstrated that ICS plays a role in the augmentation of the afterhyperpolarization (AHP) in old rats. The decrease in the AHP by ICS inhibition was reversed by the L-channel agonist, Bay K8644. Under conditions of ICS inhibition and a Bay K8644-mediated enhancement of the AHP, pattern stimulation failed to induce LTP, consistent with the idea that the AHP amplitude shapes the threshold for LTP induction. Finally, ICS inhibition was associated with an increase in the N-methyl-d-aspartate (NMDA) receptor component of synaptic transmission in old animals. This increase in the synaptic response was blocked by the calcineurin inhibitor FK506. The results reveal an age-related increase in susceptibility to LTP-induction that is normally inhibited by ICS and suggest that the age-related shift in Ca(2+) regulation and Ca(2+)-dependent synaptic plasticity is coupled to changes in cell excitability and NMDA receptor function through ICS.
منابع مشابه
P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملIntracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines.
1. A model of Ca2+ dynamics in spines of CA1 hippocampal neurons is presented. In contrast to traditional models, which concentrate on the effects of Ca2+ influx, diffusion, buffering, and extrusion, we also consider the additional effect of intracellular Ca2+ stores. 2. It is shown that traditional models without Ca2+ stores cannot account for the time course of long-term potentiation (LTP) in...
متن کاملP13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملRole of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats
The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 91 6 شماره
صفحات -
تاریخ انتشار 2004